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ABSTRACT

With the rapid development of social economy, people’s demand for diversified and precise goals
is increasingly prominent. In the face of a specific engineering application practice, how to find a
satisfactory equilibrium solution among multiple objectives has been the focus of researchers at home
and abroad. Aiming at the convergence and diversity imbalance in the current high-dimensional
multi-objective evolutionary algorithm based on reference points, this article suggests a constrained
evolutionary algorithm based on spatial division, angle culling, and hybrid matching selection strategy.
Experimental practices show that the proposed algorithm has better performance compared with
other related variants on DTLZ/WFG benchmark functions and in solving the problem of electricity
market price.
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INTRODUCTION

Many practices need consider multiple objective problem (MOP) (Cohon, 1978) at the same time to
optimize the overall effect in recent years. Typical work includes the second generation non-dominant
sequencing genetic algorithm (NSGA-II) proposed by Deb et al. Furthermore, Zitzler et al. put
forward the second-generation strength Pareto evolutionary (SPEA2) (Deb et al., 2002). NSGA-II
and SPEA2 perform well in solving 2-3 objective problems with high operating efficiency and good
distribution of solutions. However, when they face with higher dimensions (more than 4 targets),
their disadvantages of low efficiency and poor diversity will occur, just like works in (Ikeda et al.,
2001, & Khare et al., 2003) and (Purshouse et al., 2003).

Therefore, a high-dimensional multi-objective evolutionary algorithm has become a hotspot in
this field. The latest MOEA/D-M2M (Liu et al., 2014) can overcome two shortcomings of MOEA/D
(Zhang et al., 2007). A new improved algorithm based on MOEA(Deb et al., 2003, & Ghoreishi et
al., 2015), as well as the high dimensional multi-objective evolutionary algorithm based on corner
point sorting are proposed with non-dominant sorting and etc. Due to it is more difficult to calculate
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the performance index, the following problems exist. (1) The inefficiency of Pareto dominance may
lead to density-based diversity methods according to the pressure of environmental selection. (2) The
recombination operator may be invalid. (3) The visualization of Pareto’s optimal front is very difficult.

In order to trade off the relationship between convergence and diversity in high-dimensional
evolutionary algorithms based on reference points and constrained multi-objective optimization
problems, a Many-Objective Optimization Algorithm based on Space-Partition and Angle-based
culling strategy (MaOEA-SDAC) is proposed in this paper. To meet the requirements of high-
dimensional multi-objective problems with constraints, a Constrained Many-Objective Evolutionary
Algorithms based on Hybrid Mating Selection (CMaOEA-HMS) is suggested in this article, which
is integrated an approach of reference-point with non-dominated sorting.

The remainder of this paper is organized in the following. In the second section, two coevolution
strategies and their corresponding implementation are proposed. Section III and IV design some
experiments and compare the two new variants (MaOEA-SDAC and CMaOEA-HMS) with practicable
strategies with the related algorithms, and summarizes the experimental results. Section V discusses
that MaOEA-SDAC is applied into a joint calculation problem of residential ladder and peak-to-valley
time-of-use electricity price. Conclusions are made in Section VI.

TWO IMPLEMENTATION STRATEGIES

The Framework of MaOEA-SDAC

Algorithm 1 in Table 1 is the overall pseudo code of Many-Objective Optimization Algorithm based
on Space-Partition and Angle-based culling strategy (MaOEA-SDAC). In Table 1, A\ represents a
vector of reference points, P, represents an initial population, ¢ represents an iterator, P, represents
the current generation ¢ of a population, Q represents its offspring population generated by the
recombination operation, R represents a population generated after the merger of P and O, P,
represents the next generation produced by P environmental selection.

In Table 1, lines 01-03 in algorithm MaOEA-SDAC initialize some operations for a population.
Lines 05-21 are an iterative process of the population, which is also its core part. Lines 08-20 run
some actions in its environmental selection stage of the population.

The specific process of MaOEA-SDAC is as follows. The first step generates reference points

+1

A, initialize the population F, and set the number of iterations /=0. The second step enters a loop,

and the condition of the loop judgment is whether the maximum number of iterations is reached. If
the related condition is met, the solution set is output; otherwise, the loop is entered. In the cycle,

P is first matched and is selected to generate P/ , then R is cross-mutated to generate @),, and R,
is generated by combining P, and @, . Do non-dominated sorting on R , and merge the sorted result
with P to generate new P . Then, a judgement condition will be entered, which is to generate

the next population through environmental selection operation on R, . Lines 12 and 18 are two the
strategies of spatial partitioning and angle-based Culling introduced by this algorithm MaOEA-SDAC.
The Framework of CMaOEA-HMS

Algorithm 2 in Table 2 is the overall pseudo code for CMaOEA-HMS. Lines 01-03 include some initial
operations. Lines 05-25 are population iterations, and lines 05-19 are its core part in this stage, which
carries out matching and selection operations on a population. Lines 20-21 run the crossover mutation,

and lines 22-25 are the environmental selection stage of the population. Among them, C'V/ (m) represents
a degree of constraint violation of an individual, dm, (J:i,xi) is the Euclidean distance between

individuals, d (x, )\) represents the distance between an individual and its reference vector.
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Table 1. Pseudo code of MaOEA-SDAC

Algorithm 1 MaOEA-SDAC pseudo code

01: A = UniformPoint(); /* Randomly generate an initial reference vector*/

02: Py = Initialization(); /* Randomly generate a population */

03: t=0;

04: while t < T,,,4, do

05:  P{ = MatingSelection(P,); /* Implement matching selective operation */

06: Q. = SBXCrossover(P{); /* Implement Simulated Binary Crossover */

07:  Q; = PolyMutation(Q;); /* Implement polynomial mutation operation */

08: R, =P, UQ; /* merger of Pyand Q, */

09: {F, F,, ...F;, ..} =NDSort(R.); /*Implement non dominated sorting operations*/

10: Pryq = Pryq U{F, Fy, ... Fi_1}; /*¥Implement competition to choose a new generation®/
11: if |P,y1| < N then

12: C = Space-Partition(F,), /* Implement space division strategy */

13: for i=1:N

14: Q = minPBI(C;);  /*Convergence and diversity measures*/

15: Pey1 =Py U Q; /*Implement optimization strategy*/

16: end

17:  if |Pey1| > N then

18: Py 41 =Angle-based-culling(P;,1); /*Implement the culling strategy of angle*/
19: end

20: end

21 t=t+1;

22: end while

The specific chart is as follows. Firstly, the constraint violation degree C'V (fE) of individuals is
calculated, the Euclidean distance dl . (xl, x]) between individuals is calculated, and the distance

d (x, )\) between individuals and reference vectors are calculated. Then in lines 8-19, if ¢ < mazgen*r

is satisfied, that is, in the early stage of population evolution, 7 solutions are randomly selected, and
then an individual with the closest Euclidean distance to the i-th current individual joins the mating
pool. Otherwise, if the number of feasible solutions is greater than or equals 1, the distance between
feasible solutions and the reference point is calculated, and the smaller solution is selected. If there
is no feasible solution, the infeasible solution with a lower constraint violation is selected into the
matching pool.

EXPERIMENT AND ANALYSIS OF MAOEA-SDAC

Test Function Set and Performance Metrics

DTLZ (Huband et al., 2006) test function: for test functions DTLZ -DTLZ, the target dimension is
3,5, 8, 10 and 15, respectively. And the number of decision variables is n = n + k — I and m is the
target dimension. WFG (Deb et al., 2002) test function: for test functions WFG]—WFG3, the target
dimension is 3, 5, 8§, 10, and 15, the number of decision variables is 2*(m- 1)+20, m is the target
dimension, and the k and / in the WFG problem are set to 2*(m-1) and 20, respectively.
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Table 2. Pseudo code of CMaOEA-HMS

Algorithm 2 CMaOEA-HMS pseudo code
01: A = UniformPoint(); /* Randomly generate an initial reference vector*/

02: Py, = Initialization(); /* Randomly generate a population */

03: t=0;

04: while t < Tpq, do

05:  CV(x) = Th_i(g;(x)) + TkHi I (x)|; /*Calculation of constraint violation degree CV (x)*/

06: di,j(x,-,xj) = |Xi_i(xip — x;%); /* Calculate the Euclidean distance between individuals */

07:  d(x,A) =d;(x, 1) + 6 *d;,(x,A); /* Calculate the distance between an individual and its reference vector */
08: fori=1:N

09: if t < maxgen *1;

/*In the early stage of population evolution, feasible solutions and infeasible solutions are not distinguished in
the mating pool. Randomly select t solutions, and then select the individual with the nearest Euclidean distance from

the current i-th individual in the T solutions to join the mating pool*/

10: In T candidates, find the closest toX{, which isX;
11: MatingPool(i)=min(d; ; (xl-, xj));
12: else

/* When t > maxgen T, we need to try to select feasible solutions to join the mating pool. The constraint
violation degree CV(x) = 0 of the feasible solution. If there is only one feasible solution, then it is directly added to
the mating pool. If there are more than one feasible solution, two feasible solutions will be randomly selected. */

13: if sum(CV==0) > 0

14: MatingPool(i)=min(d(x, 1));

15: else

16: MatingPool(i)=min(CV (x));

17: end

18: end

19:  end

20: Q. = SBXCrossover(MatingPool); [* Implement Simulated Binary Crossover */
21: Q. = PolyMutation(Q,); [* Implement polynomial mutation operation */
22: R, =P, UQ /* merger of P,and Q, */

23: Py, = EnvironmentalSelection(R,); /*Implement environmental selection strategy to produce the next
generation*/

24: A= Adaptive(P,,,); I* Adaptive calculation operation*/

25:  t=t+l;

26: end while

Performance Indicators

Two comprehensive performance evaluation indexes are used to simultaneously verify the convergence
and diversity of the algorithm. Inverse generational distance (IGD) (Veldhuizen et al., 1999) is the
retrograde distance index, and Hyper-volume Measure (HV) (Emmerich et al., 2005) is the super
volume index. The IGD value is obtained by computing the Euclidean distance from the final solution
set to the true Pareto front surface. The smaller the IGD value, the better its convergence and diversity
of an algorithm is. The value of HV is obtained by calculating the space enclosed between its final
solution set and reference points. The greater the HV value, the better the convergence and diversity
of an algorithm is.
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Results and Analysis on DTLZ Test Functions

Cells with a bold font in Table 3 represent the optimal IGD value obtained from the six algorithms.
It can be seen from Table 3 that for the 8 target DTLZ2 problem, MaOEA-SDAC has the smallest
IGD value and that the method in this paper, which can obtain a smaller IGD value in most problems
compared with the other five methods. For DTLZ -DTLZ, problems, MaOEA-SDAC performs better
than others. The second is algorithm MOEAD, which obtains two minimum IGD values on DTLZ,
and one on DTLZ, and DTLZ,, respectively. In general, MaOEA-SDAC can obtain a good IGD
value. It can be seen from Table 4 that for DTLZ -DTLZ, problems, the MaOEA-SDAC performs
well and obtains most of the highest HV values. The second is algorithm IBEA, which obtains the
three highest HV values.

Six algorithms were used to solve the change of IGD values of DTLZ , test set of 8 targets with
the number of assessments. The relevant data results are plotted in Figure 1, Figure 2 and Figure 3.

As can be seen from Figure 1, Figure 2 and Figure 3, Algorithm NSGA-III can obtain a good
solution set for all the DTLZ -DTLZ, problems of 8 targets, but its convergence speed is slow, and
there is a little fluctuation for the DTLZ, problem of 8 targets. Algorithm MOEA/D has good
performance on the DTLZ -DTLZ, problem of 8 targets, and a good solution set is obtained with
good convergence speed. Algorithms MOEA/D-DE and IBEA have better performance on the DTLZ,
and DTLZ, problems of 8 targets, and can converge quickly to obtain a better solution set, but they
cannot obtain a better solution set for the DTLZ, problems of 8 targets. Algorithm 6-DEA can
converge quickly on the DTLZ -DTLZ, of 8 targets.

Algorithm MAOEA-SDAC can obtain a good solution set for the DTLZ -DTLZ, problems of
8 targets, and its performance is relatively stable. The convergence speed of DTLZ -DTLZ, for 8
targets is faster than that of NSGA-III.

Results and Analysis on WFG Test Functions

As you can see from Table 3, for the 3 target WFG, problem, MaOEA-SDAC has the smallest IGD
value 1.9501E-01. For the WFGI/WFG3 problems, the MaOEA-SDAC has better performance and
has obtained most of the optimal IGD values. In general, MaOEA-SDAC can obtain a good IGD
value. The second is algorithm IBEA, which obtains the four smaller IGD values.

It can be seen from Table 4 that algorithm MaOEA-SDAC still maintains a good performance with
the optimal HV Mean Values on DTLZ, , and WFG , In the designed 30 independent experimental
competitions, the best running performance reached as many as 16 times, which is much higher than
that of the second place. The second is algorithm IBEA (7/30).

EXPERIMENT AND ANALYSIS ON CMAOEA-HMS

Test Function Set and Performance Metrics

In order to verify the performance of algorithm CMaOEA-HMS when dealing with constrained
multi-objective optimization problems, CMaOEA-HMS were compared with the results of the three
current related algorithms A-NSGAIII, C-MOEA/DD and C-RVEA on two constrained test sets
(C1_DTLZ1/C2_DTLZ2), synthetic indicators IGD and HV are still used to measure the performance
of evolutionary algorithms.

Results and Analysis on Two Test Sets

Table 5 collects the IGD mean and standard deviation obtained by the four candidate algorithms
running independently for 20 times to solve the C1_DTLZ1 and C2_DTLZ2 problem of 3-15 targets.

For the 3-C1_DTLZ1 problem, the mean IGD of A-NSGAIII, C-RVEA, C-MOEA/DD and
CMaOEA-HMS are 2.6283e-02, 2.1455e-02, 2.1179e-02 and 2.0783e-02 respectively. It can be
seen that the mean IGD of CMaOEA-HMS algorithm is the smallest. It can be seen from the table
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Table 3. Six algorithms with different IGD mean values on DTLZ 1-3 and WFG 1-3

Func. M NSGAIIL ¢ -DEA MOEAD MOEA/D-DE IBEA MAOEA-SDAC
3 4.3434E-02 3.3297E-01  3.5145E-02 8.4872E-02 2.7908E-01 2.0568E-02
5 1.4164E-01  8.8452E-01  6.9738E-02 8.4145E-01 1.7474E-01 5.2648E-02
DTLZ: 8 1.3065E-01  9.7138E-02  9.5869E-02 1.5285E-01 2.2558E-01 9.6915E-02
10 8.2992E-01 1.1479E-01  1.0270E-01 1.0550E+00  2.0662E-01 1.0254E-01
15 5.7087E-01  2.6658E-01 1.2661E-01 7.1230E-01 3.2896E-01 1.7368E-01
3 5.4895E-02  5.4764E-02  5.5215E-02  7.8489E-02 8.8112E-02 5.4258E-02
5 1.8635E-01 1.7673E-01  1.6807E-01  3.9770E-01 1.9010E-01 1.6511E-01
DTLZ, 8 3.5414E-01  3.3927E-01  3.3035E-01 6.8246E-01 3.5866E-01 3.1491E-01
10 6.4476E-01  4.2999E-01  4.0966E-01 6.5341E-01 4.1436E-01 4.2066E-01
15 7.4452E-01  5.9962E-01  7.9902E-01 9.9308E-01 5.9116E-01 6.19884E-01
3 5.4888E-02  6.0634E-02  5.4725E-02 8.4937E-02 4.8033E-01 5.4929E-02
5 2.5773E-01 1.7325E-01  2.4707E+00 1.3405E+01 5.9713E-01 1.6517E-01
DTLZ; 8 7.2283E+00  1.3457E+00 3.2724E-01 7.0179E-01 6.7194E-01 3.1545E-01
10 1.6557E+01  1.2675E+00 1.1856E+00 8.1746E-01 7.2565E-01 4.1992E-01
15 1.5869E+01  6.3717E-01 6.0167E+00 3.5578E+01 1.8965E+00 6.3826E-01
3 3.2911E-01  5.1326E-01 5.0016E-01  1.5519E+00  1.9651E-01 1.9501E-01
5 1.6013E+00  1.1488E+00 1.5143E+00 2.4432E+00  6.9438E-01 4.9492E-01
WFG, 8 1.9003E+00  1.4281E+00 2.5868E+00  3.0926E+00  1.2111E+00 1.5951E+00
10 2.6914E+00 2.2287E+00 3.0726E+00 3.6808E+00  1.6293E+00 1.4861E+00
15 2.8252E+00 2.3945E+00 3.6050E+00 3.9701E+00 1.9955E+00 2.5579E+00
3 1.7460E-01  2.3385E-01 1.0521E+00  5.7052E-01 2.6003E-01 1.8116E-01
5 7.2487E-01  7.8452E-01 5.7509E+00 1.4033E+00 1.2610E+00 1.2068E+00
WEG: 8 1.8284E+00 1.7290E+00 8.9508E+00  4.0032E+00  2.7540E+00 1.5890E+00
10 6.2121E+00  2.8397E+00 1.7098E+01  4.9536E+00  8.0355E+00 1.5152E+00
15 1.3097E+01  1.8361E+01 2.7713E+01  8.0311E+00  1.6457E+01 1.6040E+01
3 9.7709E-02  1.3383E-01 1.5021E-01 1.4698E-01  4.2233E-02 3.2977E-02
5 4.7450E-01  5.0530E-01  1.2201E+00  1.7917E+00  1.3117E-01 1.5469E-01
WEG; 8 9.4931E-01  1.1597E+00 3.8427E+00  2.4929E+00  4.6631E-01 3.7686E-01
10 8.5321E-01  9.9318E-01 6.3293E+00 3.0275E+00  7.3962E-01 5.5198E-01
15 4.0532E+00 2.2846E+00 9.9090E+00 3.7987E+00  8.7455E-01 3.2482E+00

that CMaOEA-HMS obtains almost all the optimal values in solving C1_DTLZI problem and has
a good performance. In the designed 10 independent experimental competitions on C1_DTLZI
problem, the best running performance reached 9 times. According to the standard variance value
of IGD, CMaOEA-HMS has good stability. Secondly, algorithm C-MOEA/DD performs better than
A-NSGAIIT and C-RVEA. Compared with A-NSGAIII, C-RVEA obtains the best IGD values, but
those invalid values appear, which shows that algorithm C-RVEA does not solve the real solution set
of the problem when dealing with the C1_DTLZ1 problem of 10 targets.

Table 6 collects the HV mean and standard deviation obtained by the four candidate algorithms
running independently for 20 times to solve the C1_DTLZ1 and C2_DTLZ2 problem of 3-15 targets.

It can be seen from Table 5 that algorithm CMaOEA-HMS has the smallest IGD mean value for
C2_DTLZ2 of 8 targets. In addition, CMaOEA-HMS has a good performance in dealing with C2_
DTLZ2 of 3 targets, obtaining a better IGD mean value and standard variance. In terms of C2_DTLZ2
of 5 and 8 targets, CMaOEA-HMS has better performance and stability. On the C2_DTLZ?2 problem
of targets 10 and 15, CMaOEA-HMS obtained the optimal standard variance of IGD and had better
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Figure 1. IGD mean values curves of six algorithms on DTLZ 1-8

DTLZ1-8
45 NSGA-III 1
t-DEA
40 —a—SDAC 1
MOEAD-DE
35 —»—IBEA
10+ —e—NOEAD
0
E 25
20 |3
15+
10+
5 E
05 1 15 2 25 3
Number of Evaluations w10

Figure 2. IGD mean values convergence curves of six algorithms on DTLZ 2-8
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stability. From Table 6, for the C2_DTLZ2 problem of 8 targets, the HV mean of algorithm CMaOEA-
HMS is the largest, namely, CMaOEA-HMS algorithm has a good performance in C2_DTLZ2 of 3,
5 and 8 targets, and has obtained the optimal HV mean and good stability, on the C2_DTLZ?2 of 10
targets, there is a good HV standard variance, indicating a relatively good stability.

Comparative Analysis of Running Time

Figures 4 and 5 record the average time taken by the four algorithms to process two constraint problems
of 3,5, 8, 10 and 15 targets for 20 times.
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Figure 3. IGD mean values convergence curves of six algorithms on DTLZ 3-8
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For the C1-DTLZ1 problem of 3 targets, the required time of A-NSGAII, C-RVEA, CMAOEA-
HMS, and C-MOEA/DD were 23.2,24.7, 36.4, and 350.4 (seconds), respectively, in Figure 4. As can
be seen from the figure, the cost of time used by the three algorithms A-NSGAIl, CMAOEA-HMS
and C-RVEA is not much different. Algorithm CMaOEA-HMS is slightly running time longer, due to
its matching selection and computing the Euclidean distance between an individual and its reference
point. C-MOEA/DD takes the longest time, which has a large gap compared with the other three
algorithms. It can be seen that different targets correspond to different population sizes. When the
population size is large, the time taken by the four algorithms will increase. In addition, problem
C2_DTLZ2 in Figure 5 is complex and its Pareto front is discontinuous. Therefore, the time required
is relatively long.

SIMULATION APPLICATION

From the power optimization scheduling (Deb et al., 2002, & Huband et al., 2006), how to guide the
industrial residents, businesses and users of electricity, and to improve the tense situation of energy,
is becoming a hot topic.

Model Solving Process Based on MaOEA-SDAC

Step 1: Initialize parameters, generate the reference points, set the upper and lower limits of the
decision variables according to the scope of @, B, (0.5 <a < 1,-0.1 < f<0.1,-0.7 <y <0)
and then initialize the population.

Step 2: Generate an offspring population: the parent population is matched and selected, and then
the crossover mutation is carried out.

Step 3: Merge the parent with the offspring population, and then make environmental selection for
the next iteration.

Step 4: Judge whether the terminal condition has been reached or not. If not, loop step 2. If the
termination condition is reached, Pareto optimal solution set is generated.

Step 5: Select the optimal solution from Pareto optimal set, the specific steps are as follows:

a. Calculate the membership function u of the i-th Pareto solution to the j-th target value, as
shown in Equation (1):
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Table 4. Six algorithms with different HV mean values on DTLZ1-3 and WFG1-3

Func. M NSGAIII 6 -DEA MOEAD MOEA/D-DE IBEA MAOEA-SDAC

3 1.3021E-01 1.7802E-02  2.2846E-02 4.3993E-03 6.7075E-02 1.4003E-01

5 0.0000E+00 1.8435E-03  4.1477E-02 2.8473E-04 4.0473E-02 4.0316E-02

DTLZ: 8  4.7564E-03 3.3679E-07 6.3511E-03 7.1124E-03 5.7919E-03 8.3529E-03
10 1.5487E-03 1.8254E-03  2.7412E-03 1.2548E-03 1.5349E-04 2.5313E-03

15 1.0543E-04 2.8840E-05  7.8255E-05 4.6764E-05 3.5739-05 1.2682E-04

3 7.3929E-01 7.4009E-01 7.3912E-01 6.9656E-01 7.3851E-01 7.4490E-01
5 1.2173E+00 1.2267E+00 1.2607E+00 6.6797E-01 1.2992E+00 1.3092E+00

DTLZ, 8  1.7807E+00 1.9136E+00 1.8462E+00 1.0639E+00 1.9941E+00 1.9804E+00
10 1.4565E+00 2.3043E+00 2.0811E+00 1.3458E+00 2.4947E+00 2.4153E+00
15 2.7965E+00 3.9217E+00 3.7217E+00 1.4723E+00 4.0068E+00 4.1389E+00

3 7.3795E-01 7.1602E-01  7.3852E-01 6.5040E-01 3.3036E-01 7.4249E-01
5 7.2316E-01 8.2536E-01  1.2054E+00 1.01124E+00 6.9654E-01 1.3065E+00

DTLZs 8  1.5242E+00 9.0516E-01  1.9955E+00 7.8541E-01 1.8015E+00 1.9791E+00
10 1.7215E+00 1.5246E+00 2.5486E+00 1.1873E+00 1.8512E+00 2.5140E+00
15 0.0000E+00 1.1249E+00 2.2900E+00 1.3328E+00 3.1065E+00 4.1383E+00

3 5.2358E+01 4.8673E+01 4.4838E+01 1.7506E+01 5.9366E+01 5.9414E+01

5 2.4666E+03 3.2839E+03 4.4176E+03 1.0408E+03 4.8862E+03 5.9719E+03

WEG, 8 9.5722E+06 1.1510E+07 9.0080E+06 3.9816E+06 2.7420E+07 2.0548E+07
10 2.6818E+09 3.7153E+09 2.9204E+09 1.8509E+09 5.6012E+09 8.6339E+09

15 6.7032E+16 9.5666E+16 5.0831E+16 5.3341E+16 1.3823E+17 1.3811E+17

3 5.9273E+01 5.9464E+01 5.6858E+01 5.6091E+01 5.9356E+01 5.9692E+01

5 5.9731E+03 6.0150E+03 5.7596E+03 5.8592E+03 6.0546E+03 6.0689E+03

WFG> 8 2.1530E+07 2.1677E+07 1.9900E+07 2.1444E+07 2.1562E+07 2.1319E+07
10 9.5227E+09 9.4710E+09 8.5929E+09 9.5565E+09 9.4928E+09 9.5142E+09

15 1.7680E+17 1.4309E+17 1.6026E+17 1.7434E+17 1.7490E+17 1.6993E+17

3 6.1292E+00 6.1138E+00 5.6349E+00 5.6722E+00 6.5264E+00 2.5752E+01

5 1.4835E+03 1.5210E+03 0.0000E+00 1.0858E+03 5.9080E+03 5.6094E+03

WFG; 8 6.1434E+05 1.3470E+07 0.0000E+00 9.8138E+06 9.4258E+06 2.8418E+07
10 0.0000E+00 0.0000E+00 0.0000E+00 1.8081E+05 0.0000E+00 0.0000E+00

15  1.6028E+17 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

—fﬁm‘“ ff“ L i=12
— J max J min ( 1 )

Uu..
Y f; - f;’min
fjmax - f/min



International Journal of Cognitive Informatics and Natural Intelligence
Volume 17 « Issue 1

Table 5. Four algorithms on C1_DTLZ1 and C2_DTLZ2 with IGD mean and standard variance values

Func. M A-NSGAIII C-RVEA C-MOEA/DD CMaOEA-HMS
2.6283E-02 2.1455E-02 2.1179E-02 2.0783E-02
’ 4.9900E-03 6.9900E-04 1.0700E-03 1.6800E-04
7.0094E-02 5.7608E-02 5.4964E-02 5.1704E-02
> 2.2400E-02 9.8200E-03 6.1600E-03 1.4900E-04
CI-DTLZI 1.6400E-01 1.0348E-01 9.8047E-02 9.3455E-02
’ 5.7900E-02 1.4700E-02 7.8700E-03 8.2300E-04
2.0469E-01 NaN 1.1417E-01 1.0471E-01
10 5.2500E-02 NaN 1.8800E-02 4.1200E-04
2.0807E-01 1.5431E-01 1.7580E-01 1.5759E-01
b 3.3600E-02 1.0500E-02 1.6400E-02 3.8900E-03
4.4150E-02 5.3803E-02 5.0109E-02 4.4770E-02
: 2.7800E-04 1.6600E-03 4.0600E-04 5.1700E-04
1.3369E-01 1.4588E-01 1.4079E-01 1.3362E-01
> 1.2000E-03 1.5800E-03 7.7200E-04 8.0900E-04
C2-DTLZ2 4.7154E-01 2.8482E-01 3.1509E-01 2.3647E-01
’ 2.9000E-01 3.4100E-03 7.3400E-02 3.3900E-03
5.8618E-01 4.3584E-01 4.5752E-01 4.6151E-01
10 4.8500E-02 3.6300E-02 3.4800E-02 1.4600E-03
5.5870E-01 5.4083E-01 5.5420E-01 6.3328E-01
b 2.5800E-01 3.8000E-02 4.2300E-02 4.5000E-02

In Equation (1) fu is the j-th target value of the i-th Pareto solution; f

Jmin

and f  are the minimum

jmaz

and maximum values of the j-th target of Pareto solution, respectively.

b. Calculate the weight w, of the j-th target, as shown in Equation (2):

i i (uij Uy )2

w o= : i=1 vk:l‘( (2)

c. Calculate the selection priority F of the i-th Pareto solution, as shown in Equation (3), and

select the maximum value of F as the optimal solution:

3
F: - ijuu 3)
J=1

10
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Table 6. Four algorithms on 3-15 Objective C1_DTLZ1 and C2_DTLZ2 problem with different HV mean and standard variance values

Func. M A-NSGAIII C-RVEA C-MOEA/DD  CMaOEA-HMS

3 1.3459E-01 1.3758E-01 1.3614E-01 1.3949E-01

2.5300E-03 1.6000E-03 2.6600E-03 5.6500E-04

5 4.3968E-02 4.6913E-02 4.6864E-02 4.8573E-02

2.5400E-03 1.6500E-03 1.4900E-03 3.6100E-04

C1-DTLZ1 3 6.6633E-03 8.0535E-03 7.8627E-03 8.1482E-03
1.1600E-03 1.0800E-04 1.8500E-04 7.5500E-05

10 1.8351E-03 NaN 2.3172E-03 2.4076E-03

2.8500E-04 NaN 6.5700E-05 2.5200E-05

15 1.0338E-04 1.2025E-04 1.1301E-04 1.2430E-04

8.3800E-06 1.0800E-06 6.5800E-06 1.4300E-06

3 6.7954E-01 6.5785E-01 6.6953E-01 6.8211E-01

1.8600E-03 3.8300E-03 3.9300E-03 3.8200E-03

5 1.1878E+00 1.1657E+00 1.1990E+00 1.2104E+00

4.8600E-03 1.0600E-02 2.3700E-03 3.6600E-03

C2-DTLZ2 3 1.3074E+00 1.7147E+00 1.5869E+00 1.7996E+00
6.0900E-01 1.9000E-02 1.8900E-01 1.5400E-02

10 1.5121E+00 1.1360E+00 1.4689E+00 1.2999E+00

2.2100E-01 6.7500E-02 1.2300E-01 1.0100E-02

15 2.8823E+00 3.2477E+00 2.5693E+00 2.3463E+00

1.1500E+00 1.2900E-01 4.5400E-01 1.3400E-01

Figure 4. Comparison of the average running time of the four algorithms on C1-DTLZ1
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EXPERIMENTAL RESULTS AND ANALYSIS

A user’s actual load data is used to verify the effectiveness of the algorithm. Table 7 lists the optimal
Pareto solutions «, f, y and values obtained by the four algorithms. Before the implementation of the
combined price, the price of the system was P, (unit: kW/h). After the implementation of the combined
price, the price of 30% of the total user load was still P,, and the price of the rest 70% of the load in
peak, flat and valley periods was (I+a ) P, (1+p) P, (I1+y) P, respectively.

1"
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Figure 5. Comparison of the average running time of the four algorithms on C2_DTLZ2
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Table 7. Values a, 8, y of Four Algorithms
variable NSGAIII 6 -DEA IBEA MaOEA-SDAC
0.5108 0.5359 0.5002 0.5001
B -0.0999 -0.1000 -0.0861 -0.0983
Y -0.7000 -0.7000 -0.7000 -0.6979

Figure 6 shows the user load distribution curve after and before the optimization of algorithm
MaOEA-SDAC. It can be seen that after the optimization, the user load in the peak period decreases
somewhat, while the load in the trough period increases somewhat, which can relieve the power
tension and improve the load rate.

Figure 7 shows the user load distribution curve before and after optimization of the MaOEA-
SDAC algorithms. As can be seen from the figure, MaOEA-SDAC algorithms have achieved good
optimization results, such as reducing the load difference during peak and valley periods, cutting
the peak and filling the valley, and reducing the load during peak period after the adjustment of
electricity price.

Table 8 shows the average electricity consumption of the user before and after the implementation
of the stepwise and peak-valley timesharing joint optimization of the four algorithms. In the trough
period of 0, the original load was 27.2, and the load obtained by each algorithm was 28.4247,28.4595,
28.4254 and 28.4097 (unit: kW/h), all of which effectively increased the load. At the peak time of 10
o ‘clock, the original load was 34.1, and the load obtained by each algorithm was 32.7115, 32.6772,
32.7404 and 32.7295(unit: kW/h), all of which effectively reduced the load rate. It can be concluded
from Table 9 that the performance of each algorithm is relatively good.

12
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Figure 6. MaOEA-SDAC before and after load curve optimization
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Figure 7. Load curve before and after the electricity price
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Table 9 shows the user satisfaction before and after the four algorithms optimize the price of
electricity. Users’ satisfaction with electricity mode Sm, users’ satisfaction with electricity expense
Sc, and users’ comprehensive satisfaction So. The IBEA algorithm gives the highest Sm. MaOEA-
SDAC obtains the better performance on Sc and So.

CONCLUSION

Two coevolution strategies are proposed, one is based on space division and Angle culling strategy
for high dimensional multi-objective coevolution, the other is a constrained high-dimensional multi-
objective coevolution based on hybrid matching selection strategy. The two coevolution strategies

13
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Table 8. Changes in average load before and after electricity price optimization

Period Actuating NSGAIII P2 -DEA IBEA MaOEA-SDAC
preload(kW)
0 27.2 28.4247 28.4595 28.4254 28.4097
1 29.6 30.8247 30.8595 30.8254 30.8097
2 29.1 30.3247 30.3595 30.3254 30.3097
3 29.4 30.6247 30.6595 30.6254 30.6097
4 29.2 30.4247 30.4595 30.4254 30.4097
5 30.1 31.3247 31.3595 31.3254 31.3097
6 30.3 30.4679 30.4951 30.4454 30.4564
7 30.7 30.8679 30.8951 30.8454 30.8564
8 34.2 32.8115 32.7772 32.8404 32.8295
9 33.6 32.2115 32.1772 32.2404 32.2295
10 34.1 32.7115 32.6772 32.7404 32.7295
11 31.7 30.3115 30.2772 30.3404 30.3295
12 30.9 31.0679 31.0951 31.0454 31.0564
13 30.3 30.4679 30.4951 30.4454 30.4564
14 30.4 30.5679 30.5951 30.5454 30.5564
15 30.8 30.9679 30.9951 30.9454 30.9564
16 31.1 31.2679 31.2951 31.2454 31.2564
17 33.2 33.3679 33.3951 33.3454 33.3564
18 34.1 32.7115 32.6772 32.7404 32.7295
19 345 33.1115 33.0772 33.1404 33.1295
20 35.2 33.8115 33.7772 33.8404 33.8295
21 33.9 32.5115 32.4772 32.5404 32.5295
22 323 30.9115 30.8772 30.9404 30.9295
23 29.1 30.3247 30.3595 30.3254 30.3097
Table 9. Comparison of satisfaction on electricity price

S NSGAIII 6 -DEA IBEA MaOEA-SDAC

S, 0.9703 0.9693 0.9709 0.9707

Se 1.0264 1.0198 1.0258 1.0278

So 10040 0.9996 10039 1.0054

perform on DTLZ/WFG benchmark functions, and their IGD and HV values compare with those
related competitors. The effectiveness of MAOEA-SDAC and CMaOEA-HMS in solving high-
dimensional multi- objective optimization problems has been verified. Finally, the proposed MAOEA-
SDAC is employed to a multi-objective model that solves the joint calculation problem of residential
ladder and peak-to-valley time-of-use electricity price.
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